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Abstract 

The Egelman-DeRosier model of X-ray scattering 
from a helical structure possessing cumulative ran- 
dom twist is studied. The present analysis assumes 
that the random rotations between subunits are zero- 
mean uncorrelated Gaussian random variables whose 
variances are small. The average scattered intensity 
is obtained in closed form for an arbitrary number 
of scattering subunits, and also when the number of 
scattering subunits is itself a random variable gov- 
erned by a Poisson distribution. When the number of 
scattering subunits is large, the probability density 
function of the scattered intensity at a given layer 
line is obtained as the product of a negative exponen- 
tial probability density and an infinite series of 
modified Bessel functions. 

1. Introduction 

Egelman, Francis & DeRosier (1982, 1983) have 
shown that the F-actin helix can be described by a 
constant rise per subunit but with a random twist. 
Egelman & DeRosier (1982) developed the formal 
aspects of the model with respect to X-ray scattering 
and carried out calgulations of the average scattered 
X-ray intensity using analogies with polymer statis- 
tics, backed up by Monte Carlo simulations. They 
point out that their model may be applicable to many 
helical structures. 

The purpose of the present communication is an 
ab initio study of the X-ray scattering model in view 
of its importance. We obtain an expression for the 
probability density function of the scattered intensity 
at the layer lines when the number of scattering sub- 
units N is large. In addition, the average scattered 
intensity is obtained in closed form for arbitrary N, 
and when N itself is a random variable governed by 
a Poisson distribution. 

According to Egelman & DeRosier (1982), the com- 
plex amplitude due to scattering from N subunits 
which gives rise to layer-line intensities is 

C(n ,Z)= ~ exp i [ j A O ( p Z - n ) l - i n  ~ 3, (1.1) 
j = l  i=1 

where Z = I / c  (/=layer-line number, c=helical  
repeat) and jA~ = ~j-1, with ~,j the polar angle at the 

0108 -7673 / 87/010045 -05 $01.50 

j th subunit, n is the order associated with the 
azimuthal symmetry of the corresponding helix (n = 
0, +1, +2 , . . . )  and p is the pitch of a helix correspond- 
ing to n = 1. The random variable 8, describes the 
rotation between subunits, which random variation 
is cumulative. 

The 8, are taken to be zero-mean uncorrelated 
Gaussian random variables 

(8,)=o vt 

(8,8,)=(82), s =  t (1.2) 

=0,  s #  t 

where (82) is generally small. Note that Egelman & 
DeRosier (1982) do not make the Gaussian 
assumption. 

At the layer lines, i.e. 

A$(pZ-n)=2~rm,  m =0,  +1, + 2 , . . . ,  (1.3) 

the sample realizations of C(n, Z) are now given by 

C =  ~'. exp - i n  ~t • (1.4) 
j = l  t=l  

This is equation (4) of Egelman & DeRosier (1982); 
it is the basic equation for the subsequent analysis. 
For convenience we set 

J 
Oj----n ~ 8t (1.5) 

t=l  

so that C = U -  iV where 
N N 

U =  E cos 0j, V= E sin 0j. (1.6) 
j = l  j = l  

Note that C itself is not physically observable; its 
absolute square (scattered intensity) 

I = U 2 + V 2 ( (1.7) 

is the basic observable. 
The ensemble averaging over the 8t in (1.5) can be 

carded out explicitly via the formula (Thomas, 1981) 

exp +in ~_. a,8,  =exp Y'~ a~ 
,= , , , l  2 t = m  I 

(1.8) 

where the a, are deterministic constants. This 
expression is simply the multivariate characteristic 
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46 X-RAY SCATTERING FROM HELICAL STRUCTURES 

function for zero-mean uncorrelated Gaussian ran- 
dom variables. In addition, since the probability 
density functions of the sums of 6, are also zero-mean 
Gaussian, it follows that they are symmetric so that 

< ( ' ) /  ( cos n ~ a,6, =exp - - -  
tram 1 

< ( "  )/ sin n 2 a,6, =0. 
Cram I 

m2 ) /'/2(82) Z a2 

t = m l  

(1.9) 

2. Preliminaries 

The random variables U and V, themselves being 
sums of random variables, tend toward normality as 
N increases by virtue of the central limit theorem 
[see Thomas (1981)]. Consequently the joint proba- 
bility density function of U and V is given by the 
two-dimensional correlated Gaussian 

fu, v( U, V) = [2 ~rtTcXrv (1 - p2) ]-,  

xexp 2 ( 1 - 0  2 ) o'v / 

- (v)  
, ,  

O" b -~- ( U 2 ) - ( U )  2, 

where 

(2.1) 

( ( u v > - ( u ) ( v > )  
P - ( u) (  1,0 (2.2) 

o - ~ = ( v b - ( v ? .  (2.3) 

We now proceed to determine the various terms in 
(2.1), beginning with (U) and (V). Thus 

where 

N N 

( U ) =  E (cos Off= E /3"/ (2.4) 
j = l  j = l  

/ 3 -  exp (-n2(82)/2) < 1. (2.5) 

In deriving (2.4) and (2.5) we used (1.9). The series 
in (2.4) is a geometric series 

1 +/3 + / 3 2 + . . . + / 3 N - '  = (1--/3N)/(1--/3) (2.6) 

and we easily obtain 

(U)=[fl/(1--fl)](1--/3N). (2.7) 

In addition 

from (1.9). 

N 

(V)= E (sin 0j)--0 (2.8) 
j = l  

The term (UV) can be expressed as 

N N - 1  N 

(UV)=½ Y. (sin20j)+ Y~ Y~ [(sin(Or-Ok) ) 
j = l  j = l  k = j + l  

+(sin (0 r + Ok))] =0. (2.9) 

All terms vanish because the sin terms average to zero 
by virtue of (1.9). Consequently t9-  0. 

The second moments of U and V are 

N N - 1  

(ub=  Z (cos 2 or)+ E 
j = l  j = l  k = j + l  

+(cos (or + ok)>] 
N N - I  N 

(V2)  = E ( sin2 0r)+ ~ 
j = l  j = l  k = j + l  

--(COS (0 r + Ok)>]. 

The single sums are 

N 

Z [(cos ( 0 , -  0k)} 

(2.10) 

[(cos(0r-0k)) 

(2.11) 

N N N 

Z <cos 2 o,>=½ Z +½ Z <cos 2o,> 
j = l  j = l  j = l  

N 

- !  N+~ ~. f l  
j = l  

- - IN+ l i - ~  ( l-¢2N-b'  

N N N 

~ <sin ~ o,>--~ Y.-~  Y" <cos 2o,> 
j = l  j = l  j = t  

/32 
= ½ N -  ½ ( - i - ~ )  (1 - f12N-2). 

The double sums are 

(2.12) 

(2.13) 

N - 1  N 

~ <cos (oj - 0k)> 
j = l  k = j + l  

N - 1  N 

j =  1 k = j + l  

= ( N -  1 ) -  (1- fiN-l), (2.14) 

N - 1  N 

j = !  k = j + l  

N - I  N 

j =  1 k = j +  1 

 2N2,  2,5, 

The double series over the /3's were evaluated by 
repeated use of the finite geometric series, (2.6). 
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Note that the independent variables n and ( 8  2)  

enter into all the above expressions only through the 
product n2(62). 

We are now in possession of all the terms in (2.1). 

3. Average scattered intensity 
Before continuing let us determine the average scat- 
tered intensity. We will (for the present) make no 
assumptions concerning the magnitude of N. Now from 
(1.7) 

(I)=(uE)+(V2). (3.1) 

Upon collecting the various terms in the previous 
section, we have 

/ 1 + / 3 \  _/3N-,). 
(1) = ~ 1 _ - - ~ ) N - 2 ( 1  _-~flfl)- 2(1~fl~)2( 1 

(3.2) 

When N is very large, this reduces to 

(I)=[(1 + /3) / (1- /3) ]N (3.3) 

showing an N dependence in the presence of the 
random angular disorder. 

The scattered intensity for an ideal helix ((62) - 0 )  
behaves very differently. We have from (1.4) 

I = N  2 (3.4) 

showing an  N 2 dependence irrespective of the magni- 
tude of N. At the other extreme where/3 ~ 0, it follows 
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Fig. 1. Average scattered intensity as a function of  N for various 
values of  fl -- exp (n2(82)/2). Solid line: /3 = 1; broken curves: 
/3 = 0-99, 0.90, 0.75, 0.50 respectively. Dotted line: /3--=-0. 

from (3.2) that 

( I ) = N  (3.5) 

irrespective of the magnitude of N. 
In Fig. 1, we show the behavior of( l )  as a function 

of the number of scattering subunits N for some 
representative values of /3. As N gets larger, the 
cumulative effect of the scattering relative to the ideal 
helix becomes evident. At N =  10 3, the average 
intensity for/3 = 0.9 is almost two orders of magnitude 
smaller than that caused by the ideal helix. Even at 
/3 = 0.99, the difference is almost an order of mag- 
nitude. 

In many situations, it is virtually impossible to 
know the exact number of B,'s contributing to the 
scattered intensity; and it is of some interest to deter- 
mine (I) when N itself is a discrete random variable 
governed by a probability distribution P(N). It is a 
simple exercise in probability theory to prove that if 
N is a discrete random variable, then the first moment 
of the scattered intensity is 

co 

( I )= Y, (I N)P(N)  (3.6) 
N=0 

where (I] N) is the first moment of/ ,  given that N is 
deterministic [see (3.2)]. We assume that N is gov- 
erned by a Poisson distribution 

P ( N ) = ( ( N ) N / N ! ) e x p ( - ( N ) )  (3.7) 

where (N) is the first moment of N with respect to 
the Poisson distribution. Upon carrying out the 
necessary manipulations, we have 

(II(N)) 

(1+/3) 

1 ( - (N) ) ]  - 2(1_--~fl) 2[ 1 - ~ ~ o  ( f l (~ )N  exp 

(1+/3]  

- 2  {1-  (1//3) exp [- (N)(1- /3)]}  

(3.8) 
where we have made explicit the dependence on (N). 
When (N) is large 

(I[(N))=[(l+/3)/(1-/3)](N).  (3.9) 

It is only for very small values of (N) (i.e. (N) < 10) 
that the mean intensities given by (3.3) and (3.9) vary 
significantly. Thus for all practical purposes when N 
or (N) is large, we can employ (3.3). 

In some cases, it is useful to note that since 

exp (n2(62)/2) + 1 
- co th  (n2(62)/4) (3.10) 

exp  (n2(62)/2) - 1 
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we can rewrite (3.3) and (3.9) as 

(I  ] N)-~ [coth (n2(~$2)/4)]N (3.3a) 

(I ](N))= [coth (n2(62)/4)](N). (3.9a) 

When n2(62) < 1, ( I IN)  reduces to 

(IIN) ~- (4/nZ(BZ)) N (3.3 b) 

and when n2(6 z) >> 1, ( / I N )  reduces to 

(I]N)=[1-2exp(-n2(a2))]N. (3.3c) 

We note that (3.3b) was first obtained by Egelman 
& DeRosier (1982) using an analogy with polymer 
statistics. 

4. Probability density of scattered intensity 

We now resume determination of the probability 
density function of the scattered intensity when N is 
large. Upon returning to (2.1) with p = 0 ,  we trans- 
form to the joint density function of r and 0, the 
envelope and phase 

U = r cos 0, V = r sin 0. (4.1) 

The final result is 

fr, e( r, O)=(r/27ro-uo-v)exp[-R( r, 0)] (4.2) 

where 

R(r, ~) (r cos 0 - ( U ) )  2 rEsinZ @ (4.3) 
-- 2o-2 4 2 o . 2 .  

The probability density function of the envelope r 
follows by integrating out the phase; consequently 

_ _ r  
fr(r) - 2zro-t~rv exp \ -  2--~u) exp - 2--~v 

× ~ ' ~ e x p ( - S r 2 c o s  2 ¢,+ TrcosO) dq, (4.4) 

with 

s (o-~, -  ~ ~ ~ =-- O'u)/4o-uo-v, T=-(U)/O-~. (4.5) 

To evaluate the integral, rewrite the exponent as 

-Sr2 cosZ 0 + Tr cos O 

= -Sr2/2 - (Sr2/2) cos 20 + Tr cos O (4.6) 

and use the expansion (Watson, 1947) 
exp [-($2r2/2) cos 20] 

co 

= Y'. (-1)'I , ,($2r2/2) exp (i2rnO) (4.7) 
m = - - c o  

where I,, is the modified Bessel function of the first 
kind. Hence 

co 

j '~(-)d~,=exp(-Sr2/2) Y (-1)~I~(Sr~/2) 
m = - - oo  

x ~'~ exp ( Tr cos O + i2mqJ) d@. (4.8) 

However (Watson, 1947), 

~2o~ exp ( Tr c°s O + i2mO) dO= 27r12,,( Tr) (4.9) 

so that 

~ ( " )  dO = 27r exp (-Sr2/2) 
co 

x E (-1)mlm(Sr2/2)I2m(Tr). 
m = - - o o  

(4.10) 

Upon collecting the various terms, we finally obtain 
the probability density of the envelope 

Jr(r) = ( r~ o-uo-v) exp ( - (U)2/2o '2)  
2 2 2 2 x exp [ - ( o  -2 + Ov)r/4O'uOv] 

o-v-o'. '  I 
x em(-1)"I,~ 2 2 r2 

m=o 40- uo- v ] 

x I2,,((U)r/o-~) (4.11) 

where e , , = l  for m = 0 ,  e m = 2 f o r m > 0 .  
The probability density of the scattered intensity 

! = r 2 follows by the usual rules for transformation 
of variables in probability theory: 

f~ (I)  = (2O'uO'v)-' exp (-(U)Z/2o-Zu) 

x exp [-(o- 2 + o'],,)I/4o-2o-],,] 
2 2 r / o - v - o - ~ \  q 

x 12m[((U)/o-2u) 11/2]. (4.12) 

Returning to § 2, we may examine (U), (U 2) and 
(V 2) when N is large. We have from (2.7) that 

( U)~- [fl/ (1 -  fl )] (4.13) 

and from (2.10)-(2.15) 

(U2)=(V2)=½[(I+fl) / (1- f l )]N.  (4.14) 

It follows that 

o-~, + o-~, "- [(1 +/3)/(1 - / 3 ) ] N  = (I) 
(4.15) 

o ' 2 - o ' 2 = [ / 3 / ( 1  - f l ) ] 2  = (U)2. 

Upon defining the parameter a, 

a = ( U)/(I)1/2 ~: 1, (4.16) 

we can rewrite (4.12) as 

f l ( I ) = ( l )  -1 e x p ( - l / ( I ) ) e x p ( - a  2) 

£ \~,,;//a2I\ [ (~i))'/2 ] X em(-1)mI, l-T-iV.,]I2, 2or 6 

m = 0  

(4.17) 

The probability density function (PDF) of the corre- 
sponding normalized scattered intensity 

h=-I / ( I )  (4.18) 
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i s  

3~(h) = exp ( - h )  exp ( - a  2) 

oo 

× E e,,,(-1)mIm(t~2h)I2,,,(2t~h'/2) • 
m = O  

These series converge rapidly because a has such a 
small magnitude. 

The results of some numerical computations are 
shown in Fig. 2. The solid curve corresponds to the 
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Fig. 2. Probability density function of the normalized scattered 
intensity, equation (4.19), for a = 0 (solid curve), a = 0.3 (broken 
curve) .  

negative exponential PDF 

J~(h) = exp ( - h )  (4.20) 

which would arise when a = 0. Even for the unrealisti- 
cally large value of a = 0"3 (dotted curve), the PDF 
is only a minor perturbation of the negative 
exponential. 

This suggests that we seek a simpler version of 
fh(h) consistent with the fact that a is small. To this 
end we employ the usual power-series expansion of 
the modified Bessel functions. We can easily show 
that 

j ~ ( h ) - ~ ( l + a 2 )  -1 exp(-h)(l+a2h) (4.21) 

is an excellent approximation to (4.19) when a is 
very small. In fact, if a = 0.2, then (4.21) differs from 
(4.19) by less than 0.1%. This result is not surprising; 
after all, when/3 is small, then ( U ) =  0 in relation to 
(U2). The probability density function of the sum of 
the squares of two Gaussian distributed random vari- 
ables, where first moments vanish and second 
moments are equal, is known to have a negative 
exponential probability density function. 
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Abstract 

The diffraction intensity from small crystallites with 
lattice vibrations is expressed by a sum over direct- 
lattice points as previously described, using atomic 
scattering factors modified by the anisotropic vibra- 
tion tensor /3 specified by the lattice vibration, the 

thermal diffuse scattering not being taken into 
account. Since the temperature factor for the atomic 
pair of the a th  and /3 th  atoms is/3~ +/38, the factor 
is proved to have the same rotation symmetry as the 
Laue symmetry corresponding to the atomic distance 
vector of the pair, r ~  = r e - r  e. Consequently the 
intensity profile for the crystallites with lattice 
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